Discovery And Development Of Melatonin Receptor Agonists
   HOME

TheInfoList



OR:

Melatonin receptor agonists are analogues of melatonin that bind to and activate the
melatonin receptor Melatonin receptors are G protein-coupled receptors (GPCR) which bind melatonin. Three types of melatonin receptors have been cloned. The MT1 (or Mel1A or MTNR1A) and MT2 (or Mel1B or MTNR1B) receptor subtypes are present in humans and other ma ...
. Agonists of the melatonin receptor have a number of therapeutic applications including treatment of sleep disorders and depression. The discovery and development of melatonin receptor agonists was motivated by the need for more potent analogues than melatonin, with better pharmacokinetics and longer half-lives. Melatonin receptor agonists were developed with the melatonin structure as a model. The melatonin receptors are
G protein-coupled receptors G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related p ...
and are expressed in various tissues of the body. There are two subtypes of the receptor in humans,
melatonin receptor 1 Melatonin receptor type 1A is a protein that in humans is encoded by the ''MTNR1A'' gene. Function This gene encodes the MT1 protein, one of two high-affinity forms of a receptor for melatonin, the primary hormone secreted by the pineal gland. ...
(MT1) and melatonin receptor 2 (MT2). Melatonin and melatonin receptor agonists, on market or in clinical trials, all bind to and activate both receptor types. The binding of the agonists to the receptors has been investigated since 1986, yet is still not fully understood. When melatonin receptor agonists bind to and activate their receptors it causes numerous physiological processes.


History

In 1917 McCord and Allen discovered melatonin itself. In 1958, Aaron B. Lerner and his colleagues isolated the substance N-acetyl-5-methoxytryptamine and named it melatonin. High-affinity melatonin binding sites were pharmacologically characterized in the
bovine Bovines (subfamily Bovinae) comprise a diverse group of 10 genera of medium to large-sized ungulates, including cattle, bison, African buffalo, water buffalos, and the four-horned and spiral-horned antelopes. The evolutionary relationship betwe ...
brain in 1979. The first melatonergic receptor was cloned from
melanophores Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopods. Mammals and birds, in contrast, ...
of ''
Xenopus laevis The African clawed frog (''Xenopus laevis'', also known as the xenopus, African clawed toad, African claw-toed frog or the ''platanna'') is a species of African aquatic frog of the family Pipidae. Its name is derived from the three short claws ...
'' in 1994. In 1994-1995 the melatonin receptors were characterized and cloned in the human being by Reppert and colleagues. TIK-301 (PD-6735, LY-156735) has been in phase II clinical trial in the United States (US) since 2002. The FDA granted TIK-301 orphan drug designation in May 2004, to use as a treatment for circadian rhythm sleep disorder in blind individuals without light perception and individuals with
tardive dyskinesia Tardive dyskinesia (TD) is a disorder that results in involuntary repetitive body movements, which may include grimacing, sticking out the tongue or smacking the lips. Additionally, there may be rapid jerking movements or slow writhing movemen ...
. In 2005 ramelteon (Rozerem) was approved in the US indicated for treatment of
insomnia Insomnia, also known as sleeplessness, is a sleep disorder in which people have trouble sleeping. They may have difficulty falling asleep, or staying asleep as long as desired. Insomnia is typically followed by daytime sleepiness, low energy, ...
, characterized as difficulty with falling asleep, in adults. Melatonin in the form of prolonged release (trade name Circadin) was approved in 2007 in Europe (EU) for use as a short-term treatment, in patients 55 years or older, for primary insomnia (poor quality of sleep). Products containing melatonin are available as a dietary supplement in the United States and Canada. In 2009 agomelatine (Valdoxan, Melitor, Thymanax) was also approved in Europe and is indicated for the treatment of
major depressive disorder Major depressive disorder (MDD), also known as clinical depression, is a mental disorder characterized by at least two weeks of pervasive low mood, low self-esteem, and loss of interest or pleasure in normally enjoyable activities. Intro ...
in adults. Tasimelteon completed the phase III clinical trial in the United States for primary insomnia in 2010. The
Food and Drug Administration The United States Food and Drug Administration (FDA or US FDA) is a List of United States federal agencies, federal agency of the United States Department of Health and Human Services, Department of Health and Human Services. The FDA is respon ...
(FDA) granted tasimelteon orphan drug designation status for blind individuals without light perception with
non-24-hour sleep–wake disorder Non-24-hour sleep–wake disorder (non-24 or N24SWD) is one of several chronic circadian rhythm sleep disorders (CRSDs). It is defined as a "chronic steady pattern comprising ..daily delays in sleep onset and wake times in an individual living ...
in January the same year, and final FDA approval for the same purpose was achieved in January 2014 under the trade name Hetlioz.


Melatonin receptors

In humans there are two subtypes of melatonin receptors targeted by melatonin agonists, MT1 and MT2. They are G protein-coupled receptors and are expressed in various tissues of the body, together or singly. MT1 receptors are expressed in many regions of the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
(CNS): suprachiasmatic nucleus (SCN) of the hypothalamus,
hippocampus The hippocampus (via Latin from Greek , ' seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, ...
, substantia nigra, cerebellum, central
dopaminergic pathways Dopaminergic pathways (dopamine pathways, dopaminergic projections) in the human brain are involved in both physiological and behavioral processes including movement, cognition, executive functions, reward, motivation, and neuroendocrine control. ...
,
ventral tegmental area The ventral tegmental area (VTA) (tegmentum is Latin for ''covering''), also known as the ventral tegmental area of Tsai, or simply ventral tegmentum, is a group of neurons located close to the midline on the floor of the midbrain. The VTA is th ...
and
nucleus accumbens The nucleus accumbens (NAc or NAcc; also known as the accumbens nucleus, or formerly as the ''nucleus accumbens septi'', Latin for " nucleus adjacent to the septum") is a region in the basal forebrain rostral to the preoptic area of the hypot ...
. MT1 is also expressed in the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then ...
, ovary,
testis A testicle or testis (plural testes) is the male reproductive gland or gonad in all bilaterians, including humans. It is homologous to the female ovary. The functions of the testes are to produce both sperm and androgens, primarily testostero ...
,
mammary gland A mammary gland is an exocrine gland in humans and other mammals that produces milk to feed young offspring. Mammals get their name from the Latin word ''mamma'', "breast". The mammary glands are arranged in organs such as the breasts in pri ...
, coronary circulation and
aorta The aorta ( ) is the main and largest artery in the human body, originating from the left ventricle of the heart and extending down to the abdomen, where it splits into two smaller arteries (the common iliac arteries). The aorta distributes o ...
,
gallbladder In vertebrates, the gallbladder, also known as the cholecyst, is a small hollow organ where bile is stored and concentrated before it is released into the small intestine. In humans, the pear-shaped gallbladder lies beneath the liver, although ...
, liver, kidney, skin and the
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splint ...
. MT2 receptors are expressed mainly in the CNS, also in the lung, cardiac, coronary and aortic tissue,
myometrium The myometrium is the middle layer of the uterine wall, consisting mainly of uterine smooth muscle cells (also called uterine myocytes) but also of supporting stromal and vascular tissue. Its main function is to induce uterine contractions. Struc ...
and granulosa cells,
immune cells White blood cells, also called leukocytes or leucocytes, are the cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and derived from mult ...
, duodenum and
adipocytes Adipocytes, also known as lipocytes and fat cells, are the cells that primarily compose adipose tissue, specialized in storing energy as fat. Adipocytes are derived from mesenchymal stem cells which give rise to adipocytes through adipogenesis. I ...
.


Mechanism of action

The binding of melatonin to melatonin receptors activates a few signaling pathways. MT1 receptor activation inhibits the
adenylyl cyclase Adenylate cyclase (EC 4.6.1.1, also commonly known as adenyl cyclase and adenylyl cyclase, abbreviated AC) is an enzyme with systematic name ATP diphosphate-lyase (cyclizing; 3′,5′-cyclic-AMP-forming). It catalyzes the following reaction: :A ...
and its inhibition causes a rippling effect of non activation; starting with decreasing formation of
cyclic adenosine monophosphate Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transd ...
(cAMP), and then progressing to less
protein kinase A In cell biology, protein kinase A (PKA) is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (). PKA has several functions in the cell, including regulatio ...
(PKA) activity, which in turn hinders the phosphorylation of cAMP responsive element-binding protein (
CREB binding protein Cyclic adenosine monophosphate Response Element Binding protein Binding Protein (CREB-binding protein), also known as CREBBP or CBP or KAT3A, is a coactivator encoded by the ''CREBBP'' gene in humans, located on chromosome 16p13.3. CBP has intrin ...
) into P-CREB. MT1 receptors also activate phospholipase C (PLC), affect ion channels and regulate ion flux inside the cell. The binding of melatonin to MT2 receptors inhibits adenylyl cyclase which decreases the formation of cAMP. As well it hinders
guanylyl cyclase Guanylate cyclase (EC 4.6.1.2, also known as guanyl cyclase, guanylyl cyclase, or GC; systematic name GTP diphosphate-lyase (cyclizing; 3′,5′-cyclic-GMP-forming)) is a lyase enzyme that converts guanosine triphosphate (GTP) to cyclic guanos ...
and therefore the forming of
cyclic guanosine monophosphate Cyclic guanosine monophosphate (cGMP) is a cyclic nucleotide derived from guanosine triphosphate (GTP). cGMP acts as a second messenger much like cyclic AMP. Its most likely mechanism of action is activation of intracellular protein kinases in r ...
(cGMP). Binding to MT2 receptors probably affects PLC which increases protein kinase C (PKC) activity. Activation of the receptor can lead to ion flux inside the cell. When melatonin receptor agonists activate their receptors it causes numerous physiological processes. MT1 and MT2 receptors may be a target for the treatment of circadian and non circadian sleep disorders because of their differences in pharmacology and function within the SCN. The SCN is responsible for maintaining the 24 hour cycle which regulates many different body functions ranging from sleep to immune functions. Melatonin receptors have been identified in the cardiovascular system. Evidence from animal studies points to a dual role of melatonin in the vasculature. Activation of MT1 receptors mediates vasoconstriction and the activation of MT2 receptors mediates vasodilation. Melatonin is involved in regulating immune responses in both human and animals through activation of both MT1 and MT2 receptors. MT1 and MT2 receptors are widespread in the eye and are involved in regulating aqueous humor secretion, which is important for
glaucoma Glaucoma is a group of eye diseases that result in damage to the optic nerve (or retina) and cause vision loss. The most common type is open-angle (wide angle, chronic simple) glaucoma, in which the drainage angle for fluid within the eye rem ...
, and in phototransduction. This is not a complete list since many of the possible processes need further confirmation.


Drug design and development

Receptors and the structure of melatonin are known. Therefore, researchers started to investigate modulations of the core structure to develop better agonists than melatonin; more potent, with better pharmacokinetics and longer half-life. TIK-301 (figure 1) is an agonist of the early classes. It is very similar to melatonin and has made it to clinical trials. This led to further research on the molecule, mainly substitution of the aromatic ring. Various modulations showed promising activity, especially the naphthalene ring which is present in agomelatine (figure 1). Other ring systems have also showed melatonin agonist activity. Amongst them are
indane Indane or indan is an organic compound with the formula C6H4(CH2)3. It is a colorless liquid hydrocarbon. It is a petrochemical, a bicyclic compound. It occurs at the level of about 0.1% in coal tar. It is usually produced by hydrogenation of ...
which is present in ramelteon (figure 1) and the ring system of tasimelteon (figure 1).


Structure-activity relationship

The general structure of melatonin is the
indole Indole is an aromatic heterocyclic organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other c ...
ring with
methoxy In organic chemistry, a methoxy group is the functional group consisting of a methyl group bound to oxygen. This alkoxy group has the formula . On a benzene ring, the Hammett equation classifies a methoxy substituent at the ''para'' position a ...
group in position 5 (5-methoxy group) and acylaminoethyl side-chain in position 3. The two side-chains are important for binding to and activating the receptors. The indole ring has been evaluated at all positions by the effect of substitutions as seen in figure 1. Each position is further explained below:


Binding and pharmacophore

2-Iodomelatonin was synthesized in 1986 and its radioligand, 2- sup>125Imelatonin, has been useful in finding cellular targets of melatonin. Though the melatonin receptor was not characterized and cloned in the human being until 1994 it was possible to start carrying out binding studies in various tissues before that time. As mentioned in the structure-activity relationship chapter above, certain groups are important for the activity. The most important groups are the 5-methoxy group and the acylaminoethyl side-chain, because they bind to and activate the receptors. The –NH group of the indole ring is not important for binding and activation. In fact, it is possible to replace it with other aromatic ring systems ( naphthalene,
benzofuran Benzofuran is the heterocyclic compound consisting of fused benzene and furan rings. This colourless liquid is a component of coal tar. Benzofuran is the "parent" of many related compounds with more complex structures. For example, psoralen is ...
, benzothiazole,
indane Indane or indan is an organic compound with the formula C6H4(CH2)3. It is a colorless liquid hydrocarbon. It is a petrochemical, a bicyclic compound. It occurs at the level of about 0.1% in coal tar. It is usually produced by hydrogenation of ...
,
tetraline Tetralin (1,2,3,4-tetrahydronaphthalene) is a hydrocarbon having the chemical formula C10H12. It is a partially hydrogenated derivative of naphthalene. It is a colorless liquid that is used as a hydrogen-donor solvent. Production Tetralin is pro ...
,
tetrahydroquinoline Tetrahydroquinoline is an organic compound that is the semi-hydrogenated derivative of quinoline. It is a colorless oil. Use Substituted derivatives of tetrahydroquinoline are common in medicinal chemistry. Oxamniquine, dynemycin, viratmycin, a ...
s). An example of approved drug with naphthalene ring is agomelatine. The aromatic ring and the ethyl side-chain hold the correct distance between those two groups, as the correct distance is the key to good binding and more important than what type of aromatic ring system the analogue contains. Therefore, it is possible to use different ring systems in melatonin receptor analogues, if the distance is right. Furthermore, the aromatic ring can be substituted with different flexible scaffolds, such as phenyl-propilamides, ''O''-phenoxy-ethylamides or ''N''-anilino-ethylamides. The melatonin receptors consist of proteins around 40 kDa each. The MT1 receptor encodes 350 amino acids and the MT2 encodes 362 amino acids. The binding of melatonin and its analogues is now understood through X-ray crystal structures published in 2019. The binding space for melatonin and analogues on the MT1 receptor is smaller than on the MT2. Investigations usually focus on two binding pockets, for the two side-chains. The binding pocket of the 5-methoxy group is more investigated than the other pocket. Researchers agree that the oxygen in the group binds to
histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the d ...
(His) residues in transmembrane 5 (TM5) domain of the receptor with a hydrogen bond; His195 in MT1 and His208 in MT2. Another amino acid,
valine Valine (symbol Val or V) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α- amino group (which is in the protonated −NH3+ form under biological conditions), an α- carboxylic acid group (which is in the deprotona ...
192 (Val), also participates in the binding of the 5-methoxy group by binding to the methyl portion of the group. His195 has also been proposed as important for receptor activation. The binding of the N-acetyl group is more complex and less known. The important amino acids in the binding pocket for this group differ between the two receptors. Serines, Ser110 and Ser114, in the TM3 domain seem to be important for binding to the MT1 receptor. However,
asparagine Asparagine (symbol Asn or N) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), an α-carboxylic acid group (which is in the depro ...
175 (Asn) in the TM4 domain is likely to be important for the MT2 receptor. The aromatic ring system in melatonin and analogues most likely contributes some binding affinity by binding to aromatic rings of the amino acids phenylalanine (Phe) and
tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic ...
(Trp) in the receptor. The bonds that form are
van der Waals interaction In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and the ...
s. The N-acetyl binding and binding pocket, binding of the ring system and important domains are somewhat known and need further investigation. In past years, mutagenesis of residues involved in the binding site was not successful in the determination of the polar key contacts established by the methoxy group and the ethyl-amide side chain. The asparagine (Asn) 4.60 and the glutamine (Qln) 181/194, belonging to the ECL2, bind the methoxy and the ethyl-amide groups, respectively. Importance of His195/208 could be related to the receptor activation, since cryo-electron microscopy structures of the ternary complexes of the receptor show that the residues enters the binding site, near the "toogle-switch" residue Trp6.48. Carbamate insecticides target human melatonin receptors.


Current status

There are three melatonin agonists on the market today (February 2014); ramelteon (Rozerem), agomelatine (Valdoxan, Melitor, Thymanax) and tasimelteon (Hetlioz). Ramelteon was developed by
Takeda Pharmaceutical Company The is a Japanese multinational pharmaceutical company, with partial American and British roots. It is the largest pharmaceutical company in Asia and one of the top 20 largest pharmaceutical companies in the world by revenue (top 10 followin ...
and approved in the United States in 2005. Agomelatine was developed by the pharmaceutical company Servier and approved in Europe 2009. Tasimelteon was developed by Vanda Pharmaceuticals and completed the phase III trial in 2010. It was approved by the FDA on January 31, 2014 for the treatment of
non-24-hour sleep–wake disorder Non-24-hour sleep–wake disorder (non-24 or N24SWD) is one of several chronic circadian rhythm sleep disorders (CRSDs). It is defined as a "chronic steady pattern comprising ..daily delays in sleep onset and wake times in an individual living ...
in totally blind individuals. One melatonin agonist has received orphan drug designation and is going through clinical trials in the United States: TIK-301. Originally TIK-301 was developed by Eli Lilly and Company and called LY-156,735, it wasn't until July 2007 that Tikvah Pharmaceuticals took over the development and named it TIK-301. It is now in phase II trials and has been since 2002. In July 2010 in Europe, prolonged-release melatonin (Circadin, Neurim Pharmaceuticals) was approved for use for 13 weeks for insomnia patients over 55 years old. Additionally, Neurim Pharmaceuticals reported the results of a positive phase II trial of its investigational compound piromelatine (Neu-P11) in February 2013.


See also

* TIK-301 ( LY-156,735, PD-6735)


References

{{Melatonin receptor modulators Drug discovery   Hypnotics